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Abstract
The (3+1)-dimensional Dirac equation is solved in the presence of the radial
pseudoscalar Hulthén potential by using the usual approximation of the
centrifugal potential. The approach proposed by Biedenharn for the Dirac–
Coulomb problem is applied. Analytic bounded solutions of the Dirac
equation with the pseudoscalar Hulthén potential are obtained in contrast to the
pseudoscalar Coulomb one where there is no bounded solutions.

PACS numbers: 03.65.Pm, 03.65.Db, 03.65.Ge, 02.30.Mv

(Some figures in this article are in colour only in the electronic version)

1. Introduction

During the last few years, the problem of the Dirac equation with pseudoscalar potentials (PSP)
has been widely discussed either by solving the wave equation directly [1–5] or by using the
path integral approach [6, 7]. Some considerable investigations have been made to understand
the quantum behavior of Dirac particle subjected to a PSP; Villalba has shown that the inclusion
of pseudoscalar potentials with a functional dependence inversely proportional to the distance
in the (3+1) Dirac equation is not enough for obtaining bound states of the energy [1]. This
conclusion has been communicated once again by the authors of [2]. However, de-Castro
has discussed the existence of bounded states, in (1+1) dimension [3], in comparison with the
case of (3+1) dimension. The pseudoscalar interactions are also analyzed in the context of
the (1+1)-dimensional Dirac equation with non-Hermitian interactions but real energies. It
is shown that the relevant hidden symmetry of the Dirac equation with such an interaction
is pseudo-supersymmetry [4]. The energy bound states can then be found by analogy to
the supersymmetric quantum mechanics. Elsewhere, we have proposed a straightforward
method for solving the problem of Dirac particle subjected to a pseudoscalar potential by the
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supersymmetric path integrals, where we have described the spin degrees of freedom by odd
Grassmannian variables [6]. This method proved most fruitful in finding analytical and exact
expressions of the wavefunctions and the energy spectrum of the fermion in several cases,
namely that the linear potential, the modified Pöschl–Teller potential and the Scarf II potential.

The aim of this paper is to searching for the complete set of bound state solutions of the
(3+1)-dimensional Dirac equation with the pseudoscalar Hulthén potential

Vp(r) = −αδ
e−δr

1 − e−δr
, (1)

where δ is the screening parameter. The spherically symmetric Hulthén potential has important
applications in several areas of physical sciences such as nuclear and particle physics, atomic
physics, condensed matter. For small r compared to 1

δ
, the Hulthén potential approaches to

Coulomb potential whereas for large r it approaches to zero exponentially that explains the
use of this potential to study the screening effect.

As is known, the nonrelativistic Schrödinger equation with the Hulthén problem has an
exact and analytic solution only for the s-waves (i.e. l = 0 ). However, in the case where
the angular momentum is not zero, there are many investigations in searching approximate
solutions [8–14]. Among the techniques used in the search for analytical solutions for any l
states of the wave equation with this potential one is to approximate the centrifugal potential
as

l(l + 1)

r2
≈ l(l + 1)δ2 e−δr

(1 − e−δr )2
. (2)

In order to find analytical solutions of the first-order Dirac equation we iterate it in
the first stage to obtain a second-order equation. Next, by using the Biedenharn approach
we diagonalize the angular operator so that the problem can be reduced to Schrödinger-like
equation with a generalized Hulthén potential. Then we make an adequate change of the
radial variable to obtain a second-order differential equation that resembles to Riemann-type
equation and admits solutions in terms of hypergeometric series.

2. Solution of the Dirac equation

In a recent work, we have presented analytic solutions to the Klein–Gordon and Dirac equations
with the ordinary Hulthén potential [15]. Our method is based on an approximation, already
used in the Schrödinger equation, in which one replaces the centrifugal potential by an
appropriate function leading to analytic solutions (i.e. with the use of the approximation in
equation (2)). Let us proceed like in the previous work to study the motion of Dirac particle
subjected to the pseudoscalar spherically symmetric Hulthén potential.

Before finding the bounded solutions of the relative Dirac equation, let us first recall that
the Dirac equation with radial PSP has the following Hamiltonian form:

i
∂

∂t
�(t, �r) = Ĥ�(t, �r), (3)

where

Ĥ = �α �p + βm + βγ 5Vp(r), (4)

with

�α =
(

0 �σ
�σ 0

)
, β =

(
1 0
0 −1

)
, γ 5 =

(
0 i
i 0

)
. (5)
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As is known, the general procedure used to solve the ordinary Dirac equation with
spherically symmetric Lorentz vector potential is based on writing the spinor ψ (�r) as follows
[16, 17]:

ψ(�r) = 1

r


 F(r)YM

(j+ 1
2 )j

iG(r)YM

(j− 1
2 )j


 , (6)

with

YM

(j± 1
2 )j

=
∑
m,s

C
(j± 1

2 ) 1
2 j

msM Ym

j± 1
2
(θ, φ)χs (7)

and
�σ · �r
r

YM

(j± 1
2 )j

= −YM

(j∓ 1
2 )j

. (8)

The functions F(r) and G(r) then verify two coupled first-order equations.
This procedure, however, does not work for the case of the pseudoscalar potential due to

the matrix γ 5 in (4). In such a case it is convenient to iterate the Dirac equation to obtain a
quadratic equation. By setting �(t, �r) = eiEtψ(�r), we obtain without difficulties[

E2 − �P 2 − m2 − V 2(r) − V ′(r)
(

1 0
0 −1

) �σ · �r
r

]
ψ(�r) = 0 (9)

with

�P 2 = p2
r +

L2

r2
(10)

and

pr = −i
1

r

∂

∂r
r. (11)

It is well known that the operator L is not a constant of motion and the operators L2 and
�σ ·�r
r

do not have the same eigenfunctions. In this case, we can apply the approach proposed by
Biedenharn [18] and reviewed and applied to various physical problems [19–21].

Then by using the following properties of Pauli matrices and angular momentum

(�σ · �a)(�σ · �b) = (�a · �b) + i�σ · (�a × �b) (12)

and

�L × �L = i�L, (13)

we get

L2 = K2 − K, (14)

with

K = �σ · �L + 1. (15)

The analogous to the Biedenharn–Temple operator [18–21] is

� = Â + B̂, (16)

where the new operators Â and B̂ are defined as follows:

Â =
(

K 0
0 K

)
, B̂ = −α

( �σ ·�r
r

0
0 − �σ ·�r

r

)
. (17)
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It is easy to show that

{Â, B̂} = 0, (18)

and, consequently,

�2 = Â2 + B̂2 = K2 + α2. (19)

Then, according to the model of effective screened potential, by using the usual approximation
of the centrifugal potential the quadratic wave equation will take the following stationary form:[

−p2
r + E2 − m2 + α2δ2 e−δr

1 − e−δr
− �(� − 1)δ2 e−δr

(1 − e−δr )2

]
ψ(�r) = 0. (20)

Let λ be an eigenvalue of the operator �. Being aware of (19) we find

λ = ±
√(

j +
1

2

)2

+ α2. (21)

In order to separate the angular dependence of the wavefunction we assume that

ψ(�r) = 1

r

(
Y

+
j (θ, φ)ξ+(r) + Y

−
j (θ, φ)ξ−(r)

)
, (22)

where the functions Y
±
j (θ, φ), which are the eigenfunctions of the operator �

�Y
±
j (θ, φ) = ±|λ|Y±

j (θ, φ), (23)

are given by

Y
+
j (θ, φ) =

(
iαYM

(j+ 1
2 )j

− (
j + 1

2 − |λ|)YM

(j− 1
2 )j

0

)
(24)

and

Y
−
j (θ, φ) =

(
0

iαYM

(j− 1
2 )j

− (j + 1
2 − |λ|)YM

(j+ 1
2 )j

)
. (25)

By substituting equation (22) into (20), we obtain two radial wave equations, respectively, for
ξ+(r) and ξ−(r):[

∂2

∂r2
+ E2 − m2 + α2δ2 e−δr

1 − e−δr
− λ±(λ± + 1)δ2 e−δr

(1 − e−δr )2

]
ξ±(r) = 0, (26)

where the parameters λ± are given by

λ± =
√(

j +
1

2

)2

+ α2 − 1 ± 1

2
. (27)

Then, by making the change of variable from r to y = e−δr , which maps the interval r ∈]0, +∞[
into y ∈ ]0, 1[ and by setting ξ±(r) ≡ f±(y), and

k =
√

E2 − m2 k′ =
√

E2 − m2 + δ2α2, (28)

we obtain the differential equation[
∂2

∂y2
+

1

y

∂

∂y
+

(
k2

δ2

1

y
− k′2

δ2
− λ± (λ± + 1)

1

1 − y

)
1

y (1 − y)

]
f± (y) = 0, (29)

which resembles to Riemann-type equations [22]
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∂2

∂y2
+

(
1 − a − a′

y
− 1 − c − c′

1 − y

)
∂

∂y
+

(
aa′

y
− bb′ +

cc′

(1 − y)

)
1

y(1 − y)

]
f±(y) = 0

(30)

where

a = −a′ = i
k

δ
b = −b′ = i

k′

δ
c = 1 − c′ = λ± + 1 (31)

with a + a′ + b + b′ + c + c′ = 1.

Thus, the associated solution can be expressed in terms of hypergeometric function

f±(y) = ya(1 − y)c × 2F1(u, v,w, y) (32)

where

u = a + b + c v = a + b′ + c w = 2a + 1. (33)

Now, from the poles of the function f±(y) we easily determine the bound states. By putting
u = −n, (n = 0, 1, 2, . . .) we obtain, after some algebraic manipulations, the energy spectrum
of the problem

E2 − m2 = −δ2

4

(
n + λ± + 1 − α2

n + λ± + 1

)2

. (34)

The bounded solutions can be determined by the use of property [23]

2F1(u, v,w; y) = �(w)�(w − u − v)

�(w − u)�(w − v) 2
F1(u, v, u + v − w + 1; 1 − y)

+
�(w)�(u + v − w)

�(u)�(v)
(1 − y)w−u−v

2 F1(w − u,w − v,w − u − v + 1; 1 − y).

(35)

One can get, easily, the analytic expression of the states ξ± (r)

ξ±(r) = C± e(n+λ±−µ+1) δ
2 r (1 − e−δr )λ±+1F1(−n,µ + λ± + 1, 2λ± + 2; 1 − e−δr ) (36)

where

µ = α2

n + λ± + 1
(37)

and the normalization constants C± are given by

C± =
√

δ

2

1

�(2λ± + 2)

[
µ2

n + λ± + 1
− (n + λ± + 1)

] 1
2
[
�(µ + λ± + 1)�(n + 2λ± + 2)

�(n + 1)�(µ − λ±)

] 1
2

.

(38)

The functions ξ+(r) and ξ−(r) are related to one another by a first-order differential
equation. In effect, using equation (equation (22) p 383 in [24])(

z(1 − z)
∂

∂z

)
F(α, β, γ, z) = −(γ − βz − 1)F (α, β, γ, z) + (γ − 1)F (α − 1, β, γ − 1, z)

(39)

and the property (equation (5) p 1045 in [23])

F(α − 1, β, γ − 1, y) = F(α − 1, β − 1, γ − 2, y) +
(α − 1)(γ − β − 1)

(γ − 1)(γ − 2)
F (α, β, γ, y)

(40)
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Figure 1. The red line represents the function δ2 exp(−δr)

(1−exp(−δr))2 , the blue line represents the function

δ2

(1−exp(−δr))2 and the green line represents the function δ2 exp(−2δr)

(1−exp(−δr))2 . The boxes in black represent

the centrifugal potential 1/r2. The parameter δ is taken δ = 0.1.

we get

d

dr
−

(
δ
κ + � e−δr

(1 − e−δr )
+

δα2

2λ−
+ E

)
ξ−,n(z) = δ(2λ− + 1)ξ+,n+1(z) (41)

with

κ

δ
= −λ− + µ − 1

2
(n + 1)

� = λ−
2

+ n + 1.

(42)

Note that the similar relation can be obtained for ξ−,n+1(z) and ξ+,n(z).

Let us give at the end of this section some concluding remarks.
The first one is that the approximation used in this work and in many papers [8]–[14] is a

special case of the more general approximation

1

r2
≈ δ2 e−µδr

(1 − e−δr )2
, (43)

where µ is a dimensionless parameter and analytical solutions can be obtained for some values
of the parameter µ (i.e. µ = 0, 1, 2). The good approximation, however, is to take µ = 1,

as is shown in figure 1. (The blue line, the red line and the green one represent the function
δ2 exp(−µδr)

(1−exp(−δr))2 , respectively, with µ = 0, 1, 2. The boxes in black represent the centrifugal

potential 1/r2. The parameter δ is taken δ = 0.1.).
The second remark is that in the limit δ → 0, the Hulthén potential becomes Coulomb

one and equation (34) becomes E2 = m2 that explains the absence of the bound states for the
Coulomb potential as it has been concluded in [1, 2].

We also remark that one can obtain the same energy spectrum of the electron and
wavefunctions by using the path integral approach according to [25].
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3. Conclusion

In this paper, we have analytically solved the Dirac equation in (3+1) dimensions with a radial
pseudoscalar Hulthén potential. The separation of angular and radial parts was accomplished
by iterating the first-order Dirac equation to obtain a Schrödinger-like second-order equation
and by using the approach proposed by Biedenharn for the Dirac–Coulomb problem. The
angular part becomes a linear combination of two-component spherical harmonics. For the
radial part by using an appropriate approximation and by making a change of variable r,
we obtain a second-order differential equation that resembles to Riemann-type equation and
admits solutions in terms of hypergeometric series. The presented approach enables us to find
approximate bounded solutions for any j -states of Dirac particle.

To conclude, we have succeeded to find the relativistic bound states for spin-half fermion
interacting with the pseudoscalar potential in contrast to the case of pseudoscalar Coulomb
potential, where there is no bounded solutions.
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